Gene transfer of endothelial NO synthase and manganese superoxide dismutase on arterial vascular cell adhesion molecule-1 expression and superoxide production in deoxycorticosterone acetate-salt hypertension.

نویسندگان

  • Lixin Li
  • Elahe Crockett
  • Donna H Wang
  • James J Galligan
  • Gregory D Fink
  • Alex F Chen
چکیده

Enhanced vascular cell adhesion molecule-1 (VCAM-1) expression directly contributes to vascular dysfunction in hypertension. Decreased NO and/or increased superoxide are causative factors for such an event in the vessel wall. The present study was undertaken to determine whether gene transfer of endothelial NO synthase (eNOS) or manganese superoxide dismutase (MnSOD) affects VCAM-1 levels in arteries from hypertensive rats. Isolated carotid and femoral arteries from deoxycorticosterone acetate (DOCA)-salt hypertensive rats were transduced for 4 hours with adenoviral vectors encoding eNOS, MnSOD, or beta-galactosidase reporter genes. Recombinant eNOS or MnSOD expression was evident morphologically and quantitatively 24 hours after gene transfer. Immunohistochemistry, ELISA, and Western blot techniques were used to determine VCAM-1 expression and levels. In addition, endogenous eNOS and MnSOD and in situ superoxide levels were analyzed by immunoblotting and fluorescence confocal microscopy, respectively. Arterial VCAM-1 expression was significantly higher in DOCA-salt hypertensive rats than in sham-operated rats; this expression was accompanied by decreased MnSOD but unaltered endogenous eNOS levels. VCAM-1 expression was significantly lower in MnSOD- and eNOS-transduced hypertensive arteries, with a concomitant reduction of superoxide level. These results suggest that gene transfer of MnSOD or eNOS suppresses arterial VCAM-1 expression in DOCA-salt hypertension by reducing the superoxide level.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endothelin-1 increases vascular superoxide via endothelin(A)-NADPH oxidase pathway in low-renin hypertension.

BACKGROUND Angiotensin II-induced hypertension is associated with NAD(P)H oxidase-dependent superoxide production in the vessel wall. Vascular superoxide level is also increased in deoxycorticosterone acetate (DOCA)-salt hypertension, which is associated with a markedly depressed plasma renin activity because of sodium retention. However, the mechanisms underlying superoxide production in low-r...

متن کامل

Endothelin-1 stimulates arterial VCAM-1 expression via NADPH oxidase-derived superoxide in mineralocorticoid hypertension.

Although hypertension is a major risk factor for atherosclerosis, its underlying mechanisms remain to be delineated. We have recently reported that both endothelin-1 (ET-1) and vascular cellular adhesion molecule-1 (VCAM-1) levels, key early markers of atherosclerosis, are significantly elevated in carotid arteries of deoxycorticosterone acetate (DOCA)-salt hypertensive rats, a model known for ...

متن کامل

The 18-kDa Translocator Protein Inhibits Vascular Cell Adhesion Molecule-1 Expression via Inhibition of Mitochondrial Reactive Oxygen Species

Translocator protein 18 kDa (TSPO) is a mitochondrial outer membrane protein and is abundantly expressed in a variety of organ and tissues. To date, the functional role of TSPO on vascular endothelial cell activation has yet to be fully elucidated. In the present study, the phorbol 12-myristate 13-acetate (PMA, 250 nM), an activator of protein kinase C (PKC), was used to induce vascular endothe...

متن کامل

Vascular superoxide production and vasomotor function in hypertension induced by deoxycorticosterone acetate-salt.

BACKGROUND Angiotensin II-induced hypertension is associated with increased vascular superoxide production, which contributes to hypertension caused by the octapeptide. In cell culture, stretch increases endothelial and vascular smooth muscle production of reactive oxygen species (ROS). In perfused isolated vessels, elevations of pressure can increase vessel angiotensin II production. The effec...

متن کامل

Low glucose induces mitochondrial reactive oxygen species via fatty acid oxidation in bovine aortic endothelial cells

AIMS/INTRODUCTION Overproduction of reactive oxygen species (ROS) in endothelial cells (ECs) plays a pivotal role in endothelial dysfunction. Mitochondrial ROS (mtROS) is one of the key players in the pathogenesis of diabetic vascular complications. Hypoglycemia is linked to increased ROS production and vascular events; however, the underlying mechanisms remain unclear. In the present study, we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 22 2  شماره 

صفحات  -

تاریخ انتشار 2002